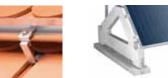


On-roof collector

SK500N-ECO-AL SK500L-ECO-AL SK500N4-ECO-AL

On-roof collector SK500-ECO-AL

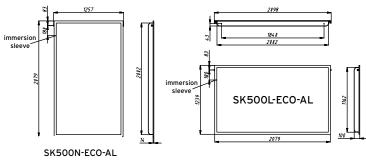
The main advantage of this collector is its ability to be used on any roof and in any situation, whether on a flat roof, in a garden, on a building facade or as part of a large system. The aluminium full-surface absorber and its highly-selective vacuum coating, high-quality insulation and the attractive and sturdy aluminium tray make the SK500-ECO-AL one of the best collectors of its type.


Specifications SK500-ECO-AL

Collectortype Flat collector Mounting type On-roof mounting Gross area m² 2,57 Aperture area m² 2,3 Absorber area m² 2,2 Length mm 2079 1239 2079 Width / Width incl. Connection mm 1239 / 1257 2079 / 2098 1239 / 1257 Height mm 100 Weight empty kg 40 Collector capacity I 1,6 Max. operating pressure bar 10 Idle temperature ° C 198 Recommended throughput I/m²h 15 - 40 Collector field piping max. 6 units in series* Min. collector incline ° 15 Max. collector incline ° 75 Connections 1" famale/male screw as SK500-ECO-A					
Mounting type On-roof mounting Gross area m² 2,57 Aperture area m² 2,3 Absorber area m² 2,2 Length mm 2079 1239 2079 Width / Width incl. Connection mm 1239 / 1257 2079 / 2098 1239 / 1257 Height mm 100 Weight empty kg 40 Collector capacity I 1,6 Max. operating pressure bar 10 Idle temperature ° C 198 Recommended throughput I/m²h 15 - 40 Collector field piping max. 6 units in series* Min. collector incline ° 15 Max. collector incline ° 15 Connections 1" female/male screw connection in top left and right as SK500-ECO-A + bottom left and right Hydraulic design Harp 0,95 / 0,05 Absorber Full surface aluminium absorber; Highly selective vacuum coating Hydraulic design Harp 0,95 / 0,05 <tr< td=""><td></td><td></td><td>SK500N-ECO-AL</td><td></td><td>SK500N4-ECO-AL</td></tr<>			SK500N-ECO-AL		SK500N4-ECO-AL
Gross area m² 2,57 Aperture area m² 2,3 Absorber area m² 2,2 Length mm 2079 1239 2079 Width / Width incl. Connection mm 1239 / 1257 2079 / 2098 1239 / 1257 Height mm 100 Weight empty kg 40 Collector capacity I 1,6 Max. operating pressure bar 10 Idle temperature ° C 198 Properation of the connection of	Collectortype		Flat collector		
Aperture area m² 2,3 Absorber area m² 2,2 Length mm 2079 1239 2079 Width / Width incl. Connection mm 1239 / 1257 2079 / 2098 1239 / 1257 Height mm 100 Weight empty kg 40 Collector capacity I 1,6 Max. operating pressure bar 10 Idle temperature ° C 198 Recommended throughput I/m²h 15 - 40 Collector field piping max. 6 units in series* Min. collector incline ° 15 Max. collector incline ° 15 Absorber Tull surface aluminium absorber; Highly selective vacuum coating Hydraulic design Harp Absorption (α) / Emission (ε)	Mounting type		On-roof mounting		
Absorber area m² 2,2	Gross area	m²	2,57		
Length	Aperture area	m²	2,3		
Width / Width incl. Connection mm 1239 / 1257 2079 / 2098 1239 / 1257 Height mm 100 Weight empty kg 40 Collector capacity I 1,6 Max. operating pressure bar 10 Idle temperature ° C 198 Recommended throughput I/m²h 15 - 40 Collector field piping max. 6 units in series* Min. collector incline ° 15 Max. collector incline ° 75 Connections 1" female/male screw connection in top left and right as SK500-ECO-A + bottom left and right Absorber Full surface aluminium absorber; Highly selective vacuum coating Harp Absorption (α) / Emission (ε) 0,95 / 0,05 Collector housing Deep-drawn, salt water resistant aluminium tray Heat insulation 50 mm mineral wool Collector glazing 3.2 mm toughened, low iron solar safety glass Efficiency (Aperture/Absorber) η _{0.a} / η _{0.a} 0,763 / 0,811 0,759 / 0,810 0,778 / 0,831 Heat transfer coefficient a _{1.a} / a _{1.b} W/(Absorber area	m²	2,2		
Height mm 100 Weight empty kg 40 Collector capacity I 1,6 Max. operating pressure bar 10 Idle temperature ° C 198 Recommended throughput I/m²h 15 - 40 Collector field piping max. 6 units in series* Min. collector incline ° 15 Max. collector incline ° 15 Max. collector incline ° 75 Connections I" female/male screw connection in top left and right right right are right and right right selective vacuum coating Hydraulic design Harp Absorption (α) / Emission (ε) 0,95 / 0,05 Collector housing Deep-drawn, salt water resistant aluminium tray Heat insulation 50 mm mineral wool Collector glazing 3.2 mm toughened, low iron solar safety glass Efficiency (Aperture/Absorber) η _{Oa} / η _{Oa} γ η _{Oa}	Length	mm	2079	1239	2079
Weight empty kg 40 Collector capacity I 1,6 Max. operating pressure bar 10 Idle temperature ° C 198 Recommended throughput I/m²h 15 - 40 Collector field piping max. 6 units in series* Min. collector incline ° 15 Max. collector incline ° 75 Connections 1" female/male screw connection in top left and right as SK500-ECO-A + bottom left and right Hydraulic design Full surface aluminium absorber; Highly selective vacuum coating Hydraulic design Harp Absorption (α) / Emission (ε) 0,95 / 0,05 Collector housing Deep-drawn, salt water resistant aluminium tray Heat insulation 50 mm mineral wool Collector glazing 3.2 mm toughened, low iron solar safety glass Efficiency (Aperture/Absorber) η _{0.0} / η _{0.0} 0,763 / 0,811 0,759 / 0,810 0,778 / 0,831 Heat transfer coefficient a ₁₀ / a ₁₀ W/(m²K²) 3,322 / 3,530 3,365 / 3,590 3,820 / 4,077 Temperature depending heat transfer coefficient a ₂₀ / a ₂₀ W/(m²K²) 0,018 / 0,019 0,020 / 0,021 0,009 / 0,010 Angle correction factor K ₀ (50°) 0,96	Width / Width incl. Connection	mm	1239 / 1257	2079 / 2098	1239 / 1257
Collector capacity I 1,6 Max. operating pressure bar 10 Idle temperature ° C 198 Recommended throughput I/m²h 15 - 40 Collector field piping max. 6 units in series* Min. collector incline ° 15 Max. collector incline ° 15 Connections 1" female/male screw connection in top left and right right right Absorber Full surface aluminium absorber; Highly selective vacuum coating Hydraulic design Harp Absorption (a) / Emission (e) 0,95 / 0,05 Collector housing Deep-drawn, salt water resistant aluminium tray Heat insulation 50 mm mineral wool Collector glazing 3.2 mm toughened, low iron solar safety glass Efficiency (Aperture/Absorber) 0,763 / 0,811 0,759 / 0,810 0,778 / 0,831 Heat transfer coefficient a _{1a} / a _{1A} W/(m²K²) 0,018 / 0,019 0,020 / 0,021 0,009 / 0,010 a _{2a} / a _{2A} Angle correction factor K ₀ (50°) 0,96	Height	mm	100		
Max. operating pressure bar 10 Idle temperature ° C 198 Recommended throughput I/m²h 15 - 40 Collector field piping max. 6 units in series* Min. collector incline ° 15 Max. collector incline ° 75 Connections 1" female/male screw connection in top left and right as SK500-ECO-A + bottom left and right Absorber Full surface aluminium absorber; Highly selective vacuum coating Hydraulic design Harp Absorption (α) / Emission (ε) 0,95 / 0,05 Collector housing Deep-drawn, salt water resistant aluminium tray Heat insulation 50 mm mineral wool Collector glazing 3.2 mm toughened, low iron solar safety glass Efficiency (Aperture/Absorber) 0,763 / 0,811 0,759 / 0,810 0,778 / 0,831 Heat transfer coefficient a _{1a} / a _{1A} W/(m²K²) 0,018 / 0,019 0,020 / 0,021 0,009 / 0,010 a _{2a} / a _{2A} Angle correction factor K₀(50°) 0,96 No.018 / 0,019 0,020 / 0,021 0,009 / 0,010	Weight empty	kg	40		
Idle temperature ° C 198 Recommended throughput I/m²h 15 - 40 Collector field piping max. 6 units in series* Min. collector incline ° 15 Max. collector incline ° 75 Connections 1" female/male screw connection in top left and right as SK500-ECO-A + bottom left and right Absorber Full surface aluminium absorber; Highly selective vacuum coating Hydraulic design Harp Absorption (α) / Emission (ε) 0,95 / 0,05 Collector housing Deep-drawn, salt water resistant aluminium tray Heat insulation 50 mm mineral wool Collector glazing 3.2 mm toughened, low iron solar safety glass Efficiency (Aperture/Absorber) η _{0.a} / η _{0.A} 0,763 / 0,811 0,759 / 0,810 0,778 / 0,831 Heat transfer coefficient a _{1.a} / a _{1.A} W/(m²K²) 0,018 / 0,019 0,020 / 0,021 0,009 / 0,010 a _{2.a} / a _{2.A} Angle correction factor K ₀ (50°) 0,996	Collector capacity	1	1,6		
Recommended throughput I/m²h 15 - 40 Collector field piping max. 6 units in series* Min. collector incline ° 15 Max. collector incline ° 75 Connections 1" female/male screw connection in top left and right right Absorber Full surface aluminium absorber; Highly selective vacuum coating Hydraulic design Harp Absorption (α) / Emission (ε) 0,95 / 0,05 Collector housing Deep-drawn, salt water resistant aluminium tray Heat insulation 50 mm mineral wool Collector glazing 3.2 mm toughened, low iron solar safety glass Efficiency (Aperture/Absorber) 0,763 / 0,811 0,759 / 0,810 0,778 / 0,831 Heat transfer coefficient a _{1a} / a _{1A} W/(m²K²) 0,018 / 0,019 0,020 / 0,021 0,009 / 0,010 a _{2a} / a _{2A} Angle correction factor K _a (50°)	Max. operating pressure	bar	10		
Collector field piping Min. collector incline o 15 Max. collector incline o 1" female/male screw connection in top left and right Full surface aluminium absorber; Highly selective vacuum coating Hydraulic design Absorption (ω) / Emission (ε) Collector housing Heat insulation Collector glazing Efficiency (Aperture/Absorber) η _{0.x} / η _{0.x} Heat transfer coefficient a _{1.a} / a _{1.A} M/(m²K²) Angle correction factor K ₀ (50°) Max. 6 units in series* 15 Max. 6 units in series* 15 As SK500-ECO-A + bottom left and right right 16 17 Full surface aluminium absorber; Harp 0,95 / 0,05 Deep-drawn, salt water resistant aluminium tray Beep-drawn, salt water resistant aluminium tray 15 Deep-drawn, salt water resistant aluminium tray 15 Doep-drawn, salt water resistant aluminium tray 16 17 17 18 19 19 19 19 19 19 19 19 19	Idle temperature	° C	198		
Min. collector incline Max. collector incline Onnections 1" female/male screw connection in top left and right Full surface aluminium absorber; Highly selective vacuum coating Hydraulic design Absorption (α) / Emission (ϵ) Collector housing Deep-drawn, salt water resistant aluminium tray Heat insulation Collector glazing 3.2 mm toughened, low iron solar safety glass Efficiency (Aperture/Absorber) η_{o_A} / η_{o_A} Heat transfer coefficient a_{i_a} / a_{i_A} W/(m²K²) a_{i_a} / a_{i_A} Angle correction factor $K_o(50^\circ)$	Recommended throughput	I/m²h	15 - 40		
Max. collector incline Onnections 1" female/male screw connection in top left and right Full surface aluminium absorber; Highly selective vacuum coating Hydraulic design Absorption (a) / Emission (e) Collector housing Deep-drawn, salt water resistant aluminium tray Heat insulation Collector glazing 3.2 mm toughened, low iron solar safety glass Efficiency (Aperture/Absorber) η_{o_A} / η_{o_A} Heat transfer coefficient a_{l_a} / a_{l_A} W/(m²K²) O,018 / 0,019 O,020 / 0,021 O,009 / 0,010 O,96 Solar Keymark Ren Nr.	Collector field piping		max. 6 units in series*		
Connections 1" female/male screw connection in top left and right 1" female/male screw connection in top left and right 2" shortom left and right 3" shortom left and right 4" shortom left 4" shortom left and right 4" shortom left 4	Min. collector incline	0	15		
Absorber Full surface aluminium absorber; Highly selective vacuum coating Hydraulic design Harp Absorption (ω) / Emission (ε) Collector housing Deep-drawn, salt water resistant aluminium tray Heat insulation 50 mm mineral wool Collector glazing 3.2 mm toughened, low iron solar safety glass Efficiency (Aperture/Absorber) η_{oa} / η_{oA} Heat transfer coefficient a_{1a} / a_{1A} W/(m²K) 3,322 / 3,530 3,365 / 3,590 3,820 / 4,077 Temperature depending heat transfer coefficient a_{2a} / a_{2A} Angle correction factor $K_o(50^\circ)$ 0,96	Max. collector incline	0	75		
Absorber Full surface aluminium absorber; Highly selective vacuum coating Hydraulic design Harp Absorption (ω) / Emission (ε) 0,95 / 0,05 Collector housing Deep-drawn, salt water resistant aluminium tray Heat insulation 50 mm mineral wool Collector glazing 3.2 mm toughened, low iron solar safety glass Efficiency (Aperture/Absorber) $0.763 / 0.811$ 0.759 / 0.810 0.778 / 0.831 Heat transfer coefficient a_{1a} / a_{1A} W/(m²K) 3,322 / 3,530 3,365 / 3,590 3,820 / 4,077 Temperature depending heat transfer coefficient a_{2a} / a_{2A} Angle correction factor $K_0(50^\circ)$ 0,018 / 0,019 0,020 / 0,021 0,009 / 0,010	Connections				as SK500-ECO-AL + bottom left and right
Absorption (α) / Emission (ϵ) Collector housing Deep-drawn, salt water resistant aluminium tray Heat insulation Collector glazing Selficiency (Aperture/Absorber) η_{0a} / η_{0a} Heat transfer coefficient a_{1a} / a_{1A} W/(m^2 K²) Angle correction factor $K_0(50^\circ)$ O,96 O,95 / 0,05 Deep-drawn, salt water resistant aluminium tray Deep-drawn, salt water resistant aluminium tray 50 mm mineral wool 0,778 / 0,831 0,759 / 0,810 0,778 / 0,831 0,759 / 0,810 0,778 / 0,831 0,759 / 0,810 0,778 / 0,831 0,759 / 0,810 0,778 / 0,831 0,759 / 0,810 0,778 / 0,831 0,778 / 0,831 0,778 / 0,831 0,759 / 0,810 0,778 / 0,831 0,778 / 0,831 0,778 / 0,831	Absorber				
Collector housing Deep-drawn, salt water resistant aluminium tray Heat insulation 50 mm mineral wool Collector glazing 3.2 mm toughened, low iron solar safety glass Efficiency (Aperture/Absorber) $0.763 / 0.811$ $0.759 / 0.810$ $0.778 / 0.831$ Heat transfer coefficient a_{1a} / a_{1A} $W/(m^2K)$ $0.782 / 0.783$ $0.782 / 0.783$ $0.783 / 0.783$	Hydraulic design		Harp		
Heat insulation 50 mm mineral wool Collector glazing 3.2 mm toughened, low iron solar safety glass Efficiency (Aperture/Absorber) $0.763 / 0.811$ $0.759 / 0.810$ $0.778 / 0.831$ Heat transfer coefficient a_{1a} / a_{1A} $W/(m^2K)$ $0.782 / 0.783$ $0.785 / 0.7$	Absorption (a) / Emission (ϵ)				
Heat insulation 50 mm mineral wool Collector glazing 3.2 mm toughened, low iron solar safety glass Efficiency (Aperture/Absorber) $0.763 / 0.811$ $0.759 / 0.810$ $0.778 / 0.831$ Heat transfer coefficient a_{1a} / a_{1A} $W/(m^2K)$ $0.018 / 0.019$ $0.020 / 0.021$ $0.009 / 0.010$ Angle correction factor $K_0(50^\circ)$ $0.018 / 0.019$ $0.020 / 0.021$ 0.096	Collector housing				
Efficiency (Aperture/Absorber) $0.763 / 0.811$ $0.759 / 0.810$ $0.778 / 0.831$ Heat transfer coefficient a_{1a} / a_{1A} $W/(m^2K)$ $0.018 / 0.019$ $0.020 / 0.021$ $0.009 / 0.010$ Angle correction factor $K_0(50^\circ)$ $0.018 / 0.019$ $0.020 / 0.021$ 0.096	Heat insulation		50 mm mineral wool		
$ \eta_{0a} / \eta_{0A} $ Heat transfer coefficient a_{1a} / a_{1A} W/(m²K) 3,322 / 3,530 3,365 / 3,590 3,820 / 4,077 Temperature depending heat transfer coefficient a_{2a} / a_{2A} O,018 / 0,019 0,020 / 0,021 0,009 / 0,010 Angle correction factor $K_0(50^\circ)$ 0,96	Collector glazing				
Temperature depending heat transfer coefficient a_{2a}/a_{2A} W/(m²K²) 0,018 / 0,019 0,020 / 0,021 0,009 / 0,010 0,096 0,96			0,763 / 0,811	0,759 / 0,810	0,778 / 0,831
heat transfer coefficient $W/(m^2K^2)$ 0,018 / 0,019 0,020 / 0,021 0,009 / 0,010 a_{2a} / a_{2A} Angle correction factor $K_a(50^\circ)$ 0,96	Heat transfer coefficient a_{1a} / a_{1A}	$W/(m^2K)$	3,322 / 3,530	3,365 / 3,590	3,820 / 4,077
Solar Keymark Pen Nr	heat transfer coefficient	W/(m ² K ²)	0,018 / 0,019	0,020 / 0,021	0,009 / 0,010
Solar Keymark Reg.Nr. 011-7S190 F 011-7S1568 F 011-7S1496 F	Angle correction factor $K_{\theta}(50^{\circ})$		0,96		
	Solar Keymark Reg.Nr.		011-7S190 F	011-7S1568 F	011-7S1496 F

Mounting systems SK500-ECO-AL

Roof brackets DBP Concrete ballast BBALSK



Support plate BDA Saddle clamp FKP

Mounting SK500-ECO-AL

All hardware and sheet metal is prefabricated by SONNENKRAFT and the unit is delievered with a full set of accessories. You can install the collector yourself. Easy-to-understand instructions are provided.

Dimensions SK500-ECO-AL

Features of SK500-ECO-AL roof mounted collector

- Elegant 2.5m² units, suitable for all types of assembly
- Highly-selective absorber coating heats water to high temperature in rapid time
- Hail-resistant solar glass
- Weather-resistant materials mean long service life
- Full surface aluminium absorber with highly-selective coating
- Elegant, deep-drawn aluminium tray
- High-quality rear wall insulation using 50mm thick, non-decaying mineral wool
- Easy-to-install detachable screw connections
- Available with four connections for larger installations (SK500N4-ECO-AL)

 $^{^{*}}$ To compensate for thermal expansion flexible connections (e.g. IWS50) have to be used for 4 or more SK500L-ECO-ALcollectors